Large-Scale Multi-granular Concept Extraction Based on Machine Reading Comprehension

نویسندگان

چکیده

The concepts in knowledge graphs (KGs) enable machines to understand natural language, and thus play an indispensable role many applications. However, existing KGs have the poor coverage of concepts, especially fine-grained concepts. In order supply with more new we propose a novel concept extraction framework, namely MRC-CE, extract large-scale multi-granular from descriptive texts entities. Specifically, MRC-CE is built machine reading comprehension model based on BERT, which can pointer network. Furthermore, random forest rule-based pruning are also adopted enhance MRC-CE's precision recall simultaneously. Our experiments evaluated upon multilingual KGs, i.e., English Probase Chinese CN-DBpedia, justify superiority over state-of-the-art models KG completion. Particularly, after running for each entity than 7,053,900 (instanceOf relations) supplied into KG. code datasets been released at https://github.com/fcihraeipnusnacwh/MRC-CE

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Large Machine Reading-Comprehension Datasets using Paragraph Vectors

We present a dual contribution to the task of machine reading-comprehension: a technique for creating large-sized machine-comprehension (MC) datasets using paragraph-vector models; and a novel, hybrid neural-network architecture that combines the representation power of recurrent neural networks with the discriminative power of fully-connected multi-layered networks. We use the MC-dataset gener...

متن کامل

the effect of genre-based teaching on reading comprehension of literary texts

تحقیق حاضر به بررسی کاربرد روش ژانر-محور را در محیط آموزش زبان عمومی می پردازد.روش ژانر-محور به زبان آموزان کمک میکند که در زمینه خوانش پیشرفت کنند. بعضی از محققین معتقد اند که روش تدریس ژانر-محور به تدریج به زبان آموزان کمک می کند تا در درک ژانر های مختلف مهارت یابند (هایلند 2004).همچنین امروزه توجه روز افزونی به اهمیت استفاده از ادبیات در برنامه آموزشی زبان انگلیسی (esl/efl ) شده است. زمانی ک...

15 صفحه اول

Medical Exam Question Answering with Large-scale Reading Comprehension

Reading and understanding text is one important component in computer aided diagnosis in clinical medicine, also being a major research problem in the field of NLP. In this work, we introduce a question-answering task called MedQA to study answering questions in clinical medicine using knowledge in a large-scale document collection. The aim of MedQA is to answer real-world questions with large-...

متن کامل

RACE: Large-scale ReAding Comprehension Dataset From Examinations

We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for eval...

متن کامل

Multi-Value Attribute Concept Lattice Reduction Based on Granular Computing

Concept lattice essentially describes the relationship between objects and attributes. The reduction of multi-value attribute concept lattice is a hot topic in the fields of information retrieval, knowledge discovery and data mining etc., while the granular computing emphasizes observing and analyzing the same problem from different granular worlds. It makes the complex problems around us be ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-88361-4_6